
0018-9162/03/$17.00 © 2003 IEEE June 2003 57

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Using Risk to Balance
Agile and Plan-
Driven Methods

M ethodologies such as Extreme Pro-
gramming (XP), Scrum, and agile
software development promise in-
creased customer satisfaction, lower
defect rates, faster development times,

and a solution to rapidly changing requirements.
Plan-driven approaches such as Cleanroom, the
Personal Software Process, or methods based on
the Capability Maturity Model promise pre-
dictability, stability, and high assurance.

However, both agile and planned approaches
have situation-dependent shortcomings that, if left
unaddressed, can lead to project failure. The chal-
lenge is to balance the two approaches to take
advantage of their strengths in a given situation
while compensating for their weaknesses.

We present a risk-based approach for structuring
projects to incorporate both agile and plan-driven
approaches in proportion to a project’s needs. We
drew this material from our book, Balancing Agility
and Discipline: A Guide for the Perplexed, to be
published in 2003.1

METHOD OVERVIEW
Our method uses risk analysis and a unified

process framework to tailor risk-based processes
into an overall development strategy. This method
enhances the ability of key development team mem-
bers to understand their environment and organi-
zational capabilities and to identify and collaborate
with the project’s stakeholders.

We use risk analysis to define and address risks
particularly associated with agile and plan-driven

methods. The Risk-Based Spiral Model Anchor
Points2 provide the framework for this process.
Both the Rational Unified Process3 (RUP) and the
Model-Based Architecting and Software Engi-
neering (Mbase) process4 have adopted these
anchor points, which are essentially an integrated
set of decision criteria for stakeholder commitment
at specific points in the development process. Our
method consists of five steps.

Step 1
First, we apply risk analysis to specific risk areas

associated with agile and plan-driven methods. We
identify three specific risk categories: environmen-
tal, agile, and plan-driven.

While not a simple task, Step 1 provides the basis
for making decisions about the development strat-
egy later in the process. If we uncover too much
uncertainty about some risk categories, spending
resources early to buy information about the pro-
ject aspects that create the uncertainty may prove
prudent.

The candidate risks we describe are just that—
candidates for consideration. They are neither com-
plete nor always applicable, but serve as guides to
stimulate participants’ thinking.

Step 2
Next, we evaluate the risk analysis results to

determine if the project at hand is appropriate for
either purely agile or purely plan-driven methods.
In these cases, the project characteristics fall
squarely in the home ground of one approach or

A tailorable, risk-based approach lets project developers enjoy the
benefits of both agile and plan-driven methods, while mitigating many
of their drawbacks.

Barry
Boehm
University of
Southern California

Richard
Turner
George Washington
University

Authorized licensed use limited to: Aarhus University. Downloaded on January 07,2021 at 11:03:43 UTC from IEEE Xplore. Restrictions apply.

58 Computer

the other, as described in the “Agile and Plan-
Driven Home Grounds and Environmental
Dimensions” sidebar, so we proceed to Step 4.

Step 3
We move to this step if our risk analysis shows

that the project has no clear agile or plan-driven
home ground. It also applies to cases in which parts
of the system have such different risks that they fall
into different home grounds.

If possible, the project team develops an archi-
tecture that supports using agile methods where
their strengths can be best applied and their risks
minimized. Plan-driven methods perform the
remainder of the work and are considered the
default when no suitable architecture can be cre-
ated. This step can sometimes uncover a new risk

or opportunity that requires backtracking to an ear-
lier step.

Step 4
In this step, we focus on developing an overall

project strategy that addresses the identified risks.
This involves identifying risk resolution strategies
for each risk and integrating them.

The specifics of the process will depend primar-
ily on the developer organization’s capabilities and
experience in the general application area. A suc-
cessful and experienced development team will
have highly capable people responsible for defin-
ing, designing, developing, and deploying the appli-
cation. Such a team could also take advantage of
reusable process assets and product patterns to
establish the strategy. Less experienced in-house or

Table A. Agile and plan-driven home grounds.

Project characteristics Agile home ground Plan-driven home ground

Application
Primary goals Rapid value, responding to change Predictability, stability, high assurance
Size Smaller teams and projects Larger teams and projects
Environment Turbulent, high change, project focused Stable, low change, project and organization focused
Management
Customer relations Dedicated onsite customers, focused As-needed customer interactions, focused on contract

on prioritized increments provisions
Planning and control Internalized plans, qualitative control Documented plans, quantitative control
Communications Tacit interpersonal knowledge Explicit documented knowledge
Technical
Requirements Prioritized informal stories and test cases, Formalized project, capability, interface, quality, foreseeable

undergoing unforeseeable change evolution requirements
Development Simple design, short increments, Extensive design, longer increments, refactoring assumed

refactoring assumed inexpensive expensive
Test Executable test cases define requirements, testing Documented test plans and procedures
Personnel
Customers Dedicated, colocated Crack* performers Crack* performers, not always colocated
Developers At least 30% full-time Cockburn Level 2 50% Cockburn Level 3s early; 10% throughout; 30%

and 3 experts; no Level 1B or Level –1 personnel** Level 1B’s workable; no Level –1s**
Culture Comfort and empowerment via many degrees Comfort and empowerment via framework of policies

of freedom (thriving on chaos) and procedures (thriving on order)

* Collaborative, representative, authorized, committed, and knowledgeable.
** See the “Cockburn’s Three Levels of Software Understanding, Slightly Revised” sidebar. These numbers will vary with the application’s complexity.

The home grounds for the agile and plan-driven methods
encompass the sets of conditions under which they are most likely
to succeed. The more a particular project’s conditions differ from
the home ground conditions, the more risk in using one approach
in its pure form and the more valuable blending in some of the
opposite method’s complementary practices becomes.

Table A describes the home grounds we have observed.
Analysis of these home grounds and the general characteris-

tics of agile and plan-driven methods led us to define the five
critical factors that describe a project environment and help
determine method balance, as Table B shows.

As shown, these factors can be summarized graphically in the
polar chart shown in Figure A. Of the five axes, Size and

Criticality represent the factors Alistair Cockburn uses to dis-
tinguish between the lighter-weight Crystal methods1 toward
the graph’s center and the heavier-weight Crystal methods that
appear toward the periphery. The Culture axis reflects that agile
methods will succeed better in a culture that “thrives on chaos”2

than in one that “thrives on order,” while the opposite is true
for plan-based methods.

The other two axes are asymmetrical in that both agile and
plan-driven methods will likely succeed at one end, while only
one of them will likely succeed at the other. For dynamism, agile
methods work well with both high and low change rates, but
plan-driven methods work best with low change rates. The per-
sonnel scale refers to the extended Cockburn method skill rat-

Agile and Plan-Driven Home Grounds and Environmental Dimensions

Authorized licensed use limited to: Aarhus University. Downloaded on January 07,2021 at 11:03:43 UTC from IEEE Xplore. Restrictions apply.

external developers must perform additional learn-
ing-curve and asset-buildup activities to ensure suc-
cess.

We advocate using the Life Cycle Architecture
anchor point milestone criterion2 to exit from
Step 4.

Step 5
No decision is ideal for all time and, as this step

indicates, the management team must constantly
monitor and evaluate the performance of its
selected processes while keeping an eye on the envi-
ronment.

This step resembles the agile practice of reflec-
tion. If a process indicates some strain, developers
must backtrack, revalidate, and perhaps adjust the
levels of the agile or plan-driven methods estab-

lished initially.
Adjustments should be made as soon as strain

arises. On a more positive note, monitoring can
also identify opportunities to improve value to the
customer, shorten time to delivery, and improve
stakeholder involvement.

The flowchart in Figure 1 summarizes these five
steps.

A SAMPLE APPLICATION FAMILY
When illustrating the practical application of our

risk-based method, we first establish a realistic con-
text by introducing a family of representative cur-
rent and future software applications. For each of
these three representative systems, the project risks
suggest using a different mix of agile and plan-dri-
ven process components.

June 2003 59

ing scale described in the “Cockburn’s Three Levels of Software
Understanding, Slightly Revised” sidebar and places it in a
framework relative to the application’s complexity. This cap-
tures the situation in which a developer might be a Level 2 in an
organization developing simple applications, but a Level 1A in
an organization developing highly complex applications. Here,
the asymmetry is that while plan-driven methods can work well
with both high and low skill levels, agile methods require a richer
mix of higher-level skills.

References
1. A. Cockburn, Agile Software Development, Addison-Wesley, 2002.
2. T. Peters, Thriving on Chaos, HarperCollins, 1991.

(Percent level 1B) (Percent level 2 and 3)
Personnel

40

30

20

10

0

15

20

25

30

35

Criticality
(Loss due to impact

of defects)

3

10

30

100

300
10

30

50

70

90

50
30

10
5

1

Size
(Number of personnel)

Culture
(Percent thriving on chaos versus order)

Dynamism
(Percent requirements-

change/month)

Comfort

Many
lives

Single
life

Essential
funds

Discretionary
funds

Agile

Plan-driven

Figure A. Polar chart. The five axes represent the factors we use to
distinguish between the lighter-weight agile methods toward the
graph’s center and the heavier-weight plan-driven methods that
appear toward the periphery.

Table B. The five critical agility and plan-driven factors.

Factor Agility discriminators Plan-driven discriminators

Size Well matched to small products and teams; reliance on Methods evolved to handle large products and teams; hard to tailor
tacit knowledge limits scalability. down to small projects.

Criticality Untested on safety-critical products; potential difficulties Methods evolved to handle highly critical products; hard to tailor down
with simple design and lack of documentation. efficiently to low-criticality products.

Dynamism Simple design and continuous refactoring are excellent Detailed plans and “big design up front” excellent for highly stable
for highly dynamic environments, but present a source of environment, but a source of expensive rework for highly dynamic
potentially expensive rework for highly stable environments. environments.

Personnel Require continuous presence of a critical mass of scarce Need a critical mass of scarce Cockburn Level 2 and 3 experts during
Cockburn Level 2 or 3 experts; risky to use nonagile project definition, but can work with fewer later in the project—unless
Level 1B people. the environment is highly dynamic. Can usually accommodate some

Level 1B people.
Culture Thrive in a culture where people feel comfortable and Thrive in a culture where people feel comfortable and empowered by

empowered by having many degrees of freedom; thrive having their roles defined by clear policies and procedures; thrive on
on chaos. order.

Authorized licensed use limited to: Aarhus University. Downloaded on January 07,2021 at 11:03:43 UTC from IEEE Xplore. Restrictions apply.

60 Computer

Step 1.
Risk
analysis

Step 3.
Architecture
analysis

Step 5.
Execute and monitor

Monitor progress and
risk/opportunities,

readjust balance and
process as appropriate

Note: Feedback loops
present, but omitted

for simplicity

Deliver incremental
capabilities

according to
strategy

Architect application
to encapsulate

agile parts

Agility risks
dominate

Rate the project’s
environmental,

agility-oriented, and
plan-driven risks

No

Yes

Plan-driven risks
dominate

Step 2.
Risk
comparison

Step 4.
Tailor life cycle

Buy information
via prototyping,
data collection,

and analysis

Go risk-based
agile for agile parts;

go risk-based
plan-driven
elsewhere

Go risk-based
plan-driven

Go risk-based
agile

Uncertain
about

ratings?

Compare
the agile and
plan-driven

risks

Neither dominate

Tailor life-cycle process
around risk patterns

and anchor point
commitment milestones

Figure 1. Risk-based
method summary.
Developers can use
a five-step process
to determine if agile
methods, plan-
driven methods, or a
combination of the
two will work best
for their project.

Drawing on the three levels of understanding in the martial
art Aikido—Shu-Ha-Ri—Alistair Cockburn identified three
levels of software method understanding that can help sort out
what people with various skill levels can be expected to do
within a given method framework.1

We have taken the liberty of splitting Cockburn’s Level 1 into
Levels 1A, 1B, and −1 to address distinctions between agile and
plan-driven methods and deal with the problem of method dis-
rupters, as Table C shows. The Level −1 people should be
rapidly identified and transferred to other work.

Level 1B people function well in performing straightforward
software development in a stable situation, but will likely slow
an agile team trying to cope with rapid change, particularly if
they form a majority of the team. The 1Bs can form a well-per-
forming majority in a stable, well-structured, plan-driven team.

Level 1A people can function well on agile or plan-driven
teams that have enough Level 2 people available to guide them.
When agilists refer to being able to succeed on agile teams with
ratios of five Level 1 people per Level 2 person, they are gen-
erally referring to Level 1A people.

Level 2 people can function well in managing a small, prece-
dented agile or plan-driven project but need the guidance of
Level 3 people on a large or unprecedented project. Some Level
2s can become Level 3s with experience, others cannot.

Reference
1. A. Cockburn, Agile Software Development, Addison-Wesley, 2002.

Table C. Levels of software method understanding and use.

Level Characteristics

3 Able to revise a method, breaking its rules to fit an unprecedented
new situation.

2 Able to tailor a method to fit a precedented new situation.
1A With training, able to perform discretionary method steps such as

sizing stories to fit increments, composing patterns, compound
refactoring, or complex COTS integration. With experience, can
become Level 2.

1B With training, able to perform procedural method steps such as
coding a simple method, simple refactoring, following coding
standards and CM procedures, or running tests. With experience, can
master some Level 1A skills.

–1 May have technical skills, but unable or unwilling to collaborate or
follow shared methods.

Cockburn’s Three Levels of Software Understanding, Slightly Revised

Authorized licensed use limited to: Aarhus University. Downloaded on January 07,2021 at 11:03:43 UTC from IEEE Xplore. Restrictions apply.

Agent-based planning systems5 are emerging
software applications that involve using software
agents to

• search for and locate desired information
across a network;

• analyze the information and determine choices
such as best-buy recommendations;

• develop plans for implementing a course of
action involving the chosen elements, includ-
ing functions such as dependency analysis and
constraint satisfaction; and

• monitor implementation of the plans to iden-
tify potential difficulties in realizing them.

Agent-based planning systems can provide signifi-
cant improvements in operational efficiency,
human-error reduction, speed of execution, adapt-
ability to changing situations, and support of com-
plex collaborative enterprises.

On the other hand, research and early applica-
tions are still addressing several agent-based sys-
tems risks. These risks include verification and
validation of agent behavior, scalability of multi-
agent behavior, commonsense reasoning about bad
data or unexpected events, and the ability to
degrade gracefully versus failing catastrophically.

Given these characteristics, balancing risks and
opportunities in agent-based systems is challeng-
ing, with the difficulty varying considerably
depending on the application’s scale and criticality.
To explore the full range of this challenge, we chose
the following three representative applications:

• Small, relatively noncritical. This agent-based
planning system for managing events such as
conferences or conventions is based on risk
patterns observed in small Web-services appli-
cations.

• Intermediate. An agent-based planning system
for supply-chain management across a net-
work of producers and consumers, this appli-
cation is based on risk patterns derived from
the ThoughtWorks experience with scaling up

XP techniques to a 50-person project in a
lease-management application.6

• Very large, highly critical. This agent-based
planning system for national crisis manage-
ment is based on risk patterns observed in the
US Defense Advanced Research Project
Agency and the US Army Future Combat
Systems program—an agent-oriented, net-
work-centric system of systems being devel-
oped by more than 2,000 people.

Table 1 summarizes each application with
respect to the major agile and plan-driven home-
ground characteristics.

We focus on the intermediate application and use
it to examine how the smaller and larger applica-
tions’ risk patterns determine different balances of
agile and plan-driven methods.

INTERMEDIATE APPLICATION
SupplyChain.com is a commercial software

house that specializes in developing turnkey agent-
based supply-chain management systems for, and
in collaboration with, large manufacturing com-
panies. These client companies generally work
with complex networks of suppliers feeding their
manufacturing processes and distributors dis-
pensing their manufactured products. SupplyChain.
com’s experience has made it a leader in this area,
but its market sector is too dynamic and driven by
customer-specific considerations to allow much
use of prebuilt plug-and-play application com-
ponents.

As Table 1 shows, SupplyChain.com’s applica-
tions typically involve distributed, multiorganiza-
tion teams of about 50 people. Its primary objective
is to provide a rapid increase in value to the man-
ufacturing company through increases in supply-
chain speed, dependability, and adaptability. Parts
of SupplyChain.com’s applications are relatively
stable; others are highly volatile. A few key COTS
packages drive their architectures, but they also
evolve continually. The risk of system failure
involves major business losses.

June 2003 61

Table 1. Summary of three sample agent-based planning system applications.

Team Failure Primary
Application size Team type risks Clients Requirements Architecture Refactoring objective

Event planning 5 In-house venture Venture Single, Goals generally Provided by Inexpensive Rapid value
startup, capital, colocated, known, details single COTS with skilled
colocated manual effort representative emergent package people

Supply-chain 50 Distributed, often Major Multiple Some parts Provided by More expensive, Rapid value
management multiorganization business success-critical relatively stable, small number with mix of increase,

losses stakeholders others volatile, of COTS people skills dependability,
emergent packages adaptability

National crisis 500 Highly distributed, Large loss Many Some parts System of Feasible only Rapid response,
management multiorganization of life success-critical relatively stable, systems, many within some safety, security,

stakeholders others volatile, COTS packages subsystems scalability,
emergent adaptability

Authorized licensed use limited to: Aarhus University. Downloaded on January 07,2021 at 11:03:43 UTC from IEEE Xplore. Restrictions apply.

62 Computer

Clearly, the program has agile aspects such as
rapid value and volatility, as well as plan-driven
aspects such as scalability and criticality. Thus, we
can apply our five-step process to determine an
appropriate strategy for this project.

Project risk ratings
The project team begins Step 1 of its balancing

analysis by assessing the major sources of Supply-
Chain.com’s environmental, agile, and plan-driven
risks.

Environmental risks. The project faces signifi-
cant technical risks, including uncertainties about
agent-based systems and the existence of many sep-
arately evolving supplier and distributor networks
that must be coordinated.

Agile risks. Reconciling a 50-person project’s
inherent diseconomies of scale with the desire to
maintain system dependability across constant-
increment delivery intervals is difficult. Reconciling
the desire of agile developers to follow the “you
aren’t going to need it” (Yagni) principle and sim-
ple design directives with the knowledge that parts
of the application will be stable and would thus
benefit from anticipatory architectures will also be
difficult. SupplyChain.com’s relatively stable work-
force makes it relatively unlikely that key person-
nel turnover will disrupt the project’s reliance on
tacit knowledge.

Plan-driven risks. These risks largely involve
incurring extensive delays through rework of elab-
orate plans and specifications in a rapidly evolving,
time-critical marketplace. Adapting elaborate plans
and specifications to rapid changes in technology,
organizations, and market conditions would prob-
ably be slow and expensive. The inability to deliver
new capabilities rapidly enough to keep pace with
the competition can lead to loss of market share.
Overreliance on prespecified requirements in areas
where requirements can emerge through user famil-

iarization and experience can affect the project
architecture and plans unpredictably.

Compare agile and plan-driven risks
In Step 2, the team first determines whether agile

or plan-driven risks dominate the project. Figure 2
shows how SupplyChain.com looks on a home-
ground critical-factor polar chart.

The selective application of plan-driven planning
and architecting techniques can address the primary
agile risks of scalability, criticality, and simple design.
The selective application of agile methods within an
overall plan-driven framework could address the
combined plan-driven risks of rapid change, need
for rapid response, and emerging requirements.
Either an experienced agile team or a suitably agile
RUP or Team Software Process team would be most
likely to succeed in implementing this strategy.

Given SupplyChain.com’s culture and environ-
ment, the team decides to apply a risk-based agile
approach. If, however, the company’s environment
included a more stable, well-understood, financially
critical marketplace and a high rate of agile per-
sonnel turnover, the risk-based plan-driven
approach would be preferable.

Individual risk-resolution strategies
Because Step 2 resulted in a risk-based agile deci-

sion, the project team can bypass Step 3 and begin
Step 4 by identifying a resolution strategy for each
risk.

Many separately evolving networks. Proceeding too
rapidly, without the involvement of success-critical
stakeholders, presents a major risk. Concentrating
on supply-chain logistics management without
considering financial stakeholders and concerns is
an example of such a risk. Techniques such as the
DMR Consulting Group’s Results Chain7 help
identify missing success-critical initiatives and
stakeholders.

Accepting unqualified stakeholder representa-
tives as team members presents another major risk.
Stakeholder representatives should be Crack per-
formers: collaborative, representative, authorized,
committed, and knowledgeable. Shortfalls in any
of these capabilities can lead to frustration, delay,
and wasted project effort, not to mention an unac-
ceptable product. Generally, project teams benefit
more from a part-time Crack performer than from
a full-time non-Crack performer.

A third major risk involves the difficulty of coor-
dinating interface protocols among dynamically
evolving supplier and distributor networks with
different internal-evolution strategies. Establishing

(Percent level 1B) (Percent level 2 and 3)
Personnel

40

30

20

10

0

15

20

25

30

35

Criticality
(Loss due to impact

of defects)

3

10

30

100

300
10

30

50

70

90

50
30

10
5

1

Size
(Number of personnel)

Culture
(Percent thriving on chaos versus order)

Dynamism
(Percent requirements-

change/month)

Comfort
Many
lives

Single
life Essential

funds

Discretionary
funds

Figure 2. Home
ground chart for
SupplyChain.com,
an intermediate-
sized, agent-based
application.

Authorized licensed use limited to: Aarhus University. Downloaded on January 07,2021 at 11:03:43 UTC from IEEE Xplore. Restrictions apply.

mutual commitments to relatively stable interface
protocols and continuing to monitor and evolve
mutually satisfactory changes requires considerable
up-front effort.

Technical uncertainties. The set of technical risks
associated with agent-based systems provides a
major source of uncertainty. Before committing to
a specific agent-coordination approach or pack-
age, the project team must determine critical agent
and agent-coordination objectives, constraints,
and priorities, then use them in evaluating the
agent technology candidates via appropriate com-
binations of reference checking, analysis, bench-
marking, and prototyping.

The set of technical risks associated with the per-
formance and interoperability of COTS packages
used across the supply chain’s stakeholder organi-
zations presents a similar source of uncertainty. The
team needs similar risk-assessment strategies to
establish satisfactory COTS package combinations.
For both these technical uncertainty areas, the team
must maintain a continuous watch to assess emerg-
ing technology risks and opportunities.

Diseconomies of scale. Most agilists with whom we
have discussed this issue blanch at the idea of
lengthening the release interval as the application
gets larger and the effort required to develop and
integrate new stories—scenarios describing desired
operational capabilities—increases. But something
must be done to avoid the problems with integra-
tion schedules and the strain on shared responsi-
bility and tacit knowledge that come with the
increasing number of stories implemented and the
lengthening refactoring times.

One approach that may help conserve the release
interval is to make later stories more granular and
amenable to timeboxing. However, in larger, multi-
team applications, this requires further coordination
to ensure that one team’s application component
does not need features dropped by another team.

Foreseeable change versus simple design. The
supply-chain application will have some foresee-
able sources of change, such as new data and oper-
ations involved in supply-chain transactions.
Developers can use factory patterns to create a
framework for accommodating such sources much
more readily than with simple design and contin-
uous refactoring.

More generally, developers can handle foresee-
able sources of change architecturally by using the
information-hiding technique of encapsulating the
change sources within individual modules,8 thus
eliminating the ripple effects that such changes
cause.

Personnel turnover and tacit knowledge loss.
Within the development team, rotating peo-
ple across programming pairs or across fea-
ture teams can reduce tacit knowledge losses.
The loss of key supply-chain stakeholder
representatives can be equally critical, but
keeping alternate representatives involved
can reduce the impact of such losses.

SupplyChain.com and its operational
stakeholders reduced the probability of loss
as well as the size of loss due to personnel
turnover by establishing significant bonuses
for successful project completion.

Prespecified plans and specifications. Delays
and reduced competitiveness can result from
relying on elaborate prespecified plans and
specifications. One effective approach to
dealing with the risks of overspecification
uses a risk-based approach to specifications:9

• Don’t write specifications when the risk of not
using them is low and the risk of using them
is high. A good example is a written graphical
user interface specification. With a good GUI-
builder tool, the risk of not writing specifica-
tions is low. With extensive GUI iterations,
the risk of expensive specification rework is
high.

• Do write specifications when the risk of using
them is low and the risk of not using them
is high. A good example is a written
supply-chain interface protocol specification
achieved through extensive stakeholder nego-
tiations.

A similar approach can apply to risk-based
process plans. For the various organizations mak-
ing commitments to the timing of introducing new
operational interfaces and business workflows, not
developing top-level milestone plans and critical-
path dependencies would be risky. On the other
hand, with an experienced team and rapidly chang-
ing circumstances, using a heavyweight earned-
value management system would add more risk of
delay than it would subtract.

Risk-based testing is another area in which plan-
ning can save downstream time and effort. Most
projects spend as much time and effort testing the
low-risk parts of the code as they spend testing the
high-risk parts. Focusing the test effort on the high-
risk parts—agent coordination, potentially critical
failure modes, and highest-value business work-
flows—can generate project time and effort savings
and avoid high-cost operational losses.

June 2003 63

Focusing test effort
on the high-risk
parts—agent
coordination,

potentially critical
failure modes, and

highest-value
business

workflows—
can generate

project time and
effort savings.

Authorized licensed use limited to: Aarhus University. Downloaded on January 07,2021 at 11:03:43 UTC from IEEE Xplore. Restrictions apply.

64 Computer

Risk-based strategy for system development
Continuing with Step 4, the project team imple-

ments the overall project strategy summarized in
Figure 3. This strategy integrates the individual risk
resolution approaches. Figure 3 uses horizontal
swim lanes to describe participant groups, rectan-
gles overlaying lanes to show the project activities
of the participant groups involved, shaded areas to
identify phases, and ovals to show decision
points—the spiral anchor point milestones.2 In this
case, there are three primary participant groups:

• The operational stakeholders include a largely
dedicated manufacturing-company represen-
tative, a part-time supplier-company repre-
sentative, and a part-time distributor-company
representative. Each is a Crack performer who
has an alternate to ensure representation con-
tinuity. These stakeholders can also call on as-
needed specialists from other parts of the
organizations they represent.

• The SupplyChain.com project manager and
three Cockburn Level 2 or 3 SupplyChain.com
staff members form a risk-and-opportunity
management team that maintains a continuous
watch for emerging project risks or opportuni-
ties. When such risks or opportunities arise, the
risk management team initiates actions such as
prototyping, COTS evaluation, change-pro-
posal evaluation, or complex refactoring to
explore options and develop an appropriate
response to the risk or opportunity. When no
major risks or opportunities are active, these
staff members contribute to one of the devel-
opment teams—often in a mentoring role.

• A group of agile feature teams operate con-
currently to develop the features involved in
each increment of system capability. The teams
primarily focus on particular application areas
such as supplier or distributor transactions and
manufacturing support. Their team leaders are
Cockburn Level 2 personnel. The team mem-
bers are mixes of Level 2 and Level 1A per-
sonnel, with no Level 1B personnel. Personnel
rotate across teams. There will be a ramp-up of
team members from the manufacturing com-
pany when it eventually takes over continuing
software development.

The risk patterns for projects of this scale and
complexity make it best to organize them into three
primary phases, with team leaders representing
their teams in the first two phases.

Phase 1, roughly corresponding to a RUP or
Mbase inception phase, involves rapid teambuild-
ing and development of a shared system vision
among the stakeholders. Techniques used in this
phase include prototyping key user features, COTS
evaluation, brainstorming, results-chain develop-
ment, and negotiation of a mutually satisfactory set
of strategic project objectives and priorities.

Phase 2, roughly corresponding to a RUP or
Mbase elaboration phase, establishes

• the overall operational concept and life-cycle
strategy;

• a set of key COTS, reuse, and architecture
decisions, including development of high-risk
components;

• a full project organization; and

Design, development, and deployment

• Elaborate supply
 chain operational
 concept,
 prototypes,
 transition
 strategy
• Evaluate and
 determine COTS,
 reuse, and
 architecture
 choices
• Develop high-risk
 components
• Prioritize and
 sequence desired
 capabilities,
 outstanding risks
• Establish project
 organization,
 overall process,
 and feature
 teams

• Monitor project progress,
 risk resolution, and new
 technology developments
• Identify and work critical
 project-level actions

• Develop benefits-
 realization results
 chains
• Identify missing
 stakeholders
• Enhance
 understanding
• Explore goals,
 options,
 technology,
 prototypes,
 risks

• Communicate
 proposed
 redirections
• Prepare for
 and execute
 acceptance
 tests,
 installation,
 operational
 evolution

• Analyze
 feedback
 on current
 version
• Reprioritize
 features
• Prepare
 strategy
 for next
 increment

Commit
to

proceed

Pr
oj

ec
t m

an
ag

er
 a

nd
ris

k
m

an
ag

em
en

t t
ea

m
Ag

ile
 fe

at
ur

e
te

am
Op

er
at

io
na

l s
ta

ke
ho

ld
er

s

• Use risk to determine content
 of artifacts

Systems
definition and
architecting

Teambuilding
and shared

vision

Startup

• Ensure representative
 exercise of incremental
 capabilities
• Monitor progress and
 new operational
 development

• Develop and integrate
 new feature increments

Commit
to

proceed

Staff and
organize to

cover all
success-critical

risk areas

Furnish
Crack team

representatives
and alternates

Phase 1 Phase 2 Phase 3

Figure 3. Overall
SupplyChain.com
project strategy.
Horizontal swim
lanes describe
participant groups,
rectangles overlay-
ing lanes show the
project activities
of the participant
groups, shaded
areas identify
phases, and ovals
show decision
points.

Authorized licensed use limited to: Aarhus University. Downloaded on January 07,2021 at 11:03:43 UTC from IEEE Xplore. Restrictions apply.

• an initial set of top-priority features to develop
in Increment 1.

Both Phases 1 and 2 conclude with a review by
senior experts and stakeholder representatives,
securing full stakeholder commitment to support
the next phase. If not, the project is terminated or
backtracked to Phase 1 or earlier Phase 2 activities.

In situations involving cohesive, domain-experi-
enced development teams with more than 40 per-
cent Cockburn Level 2 and 3 people, Crack
customers with a clear set of business objectives,
and mature domain architectures and COTS prod-
ucts, the activities in Phases 1 and 2 can be com-
bined and completed in a week. If most of these
conditions do not hold, a better estimate would be
three months each for Phases 1 and 2.

In Phase 3, the feature teams develop successive
increments of prioritized system capability in par-
allel. The operational stakeholders ensure that the
teams exercise and iterate each increment based on
feedback from representative users. The entire team
collaborates to discover and deal with emerging
risks and opportunities, make and evaluate change
proposals, and support each increment’s transition
into operational use.

A final shared task is to prepare the strategy for
the next increment, consolidating lessons learned,
planning for process improvement, and perhaps
backtracking to earlier phases.

APPLYING THE METHOD FAMILY-WIDE
Figure 4 summarizes the results of applying Step

1 to each project in the agent-based family.
For the small, event-management application,

the plan-driven risks clearly dominate the agile
risks, with several plan-driven showstoppers. Step
2 thus leads this application to adopt an agile
approach. Its process is a simple two-phase version
of Figure 3, with two swim lanes representing a sin-
gle agile team and its stakeholders.

Some aspects of the very large national crisis
management application—its size and complex-
ity—clearly represent showstoppers for pure agile
methods such as simple design. But other aspects—
rapid change and emergent requirements—are
higher risks for plan-driven methods than for agile.
Step 3 then applies, leading to a strategy that encap-
sulates the agile parts of this application, using risk-
based agile methods in the agile parts, and applying
risk-based plan-driven methods elsewhere. Its
resulting risk-driven process is a more complex
three-phase version of Figure 3, with the develop-
ment swim lane broken into separate swim lanes
for agile and plan-driven feature teams. Further
details can be found in our book.1

D evelopers can use our tailorable process to
balance agile and plan-driven methods in a
customized software development strategy.

This process can help organizations and projects
take advantage of both the agile and plan-driven
methods’ benefits, while mitigating many of their
drawbacks.

Versions of this process are currently being used

June 2003 65

 Risk ratings
Risk items Event Managers SupplyChain.com NISCM

E-Tech : Technology uncertainties. � �� ���

E-Coord : Many stakeholders. � � ���

E-Cmplx : Complex system of systems. � � ���

A-Scale : Scalability. � �� ��—����

A-Yagni : Use of simple design. � � ��—����

A-Churn : Personnel turnover. �� � ��

A-Skill : Not enough people skilled in � � ��—����
 agile methods.

P-Change : Rapid change. ���� �� ��

P-Speed : Need for rapid results. ���� �� ��

P-Emerge : Emergent requirements. ���� �� ��

P-Skill : Not enough people skilled in � � ��
 plan-driven methods.

En
vi

ro
nm

en
ta

l
ris

ks

Risk rating scale
� Minimal risk
� Moderate risk
�� Serious but manageable risk
��� Very serious but manageable risk
���� Showstopper risk

Ri
sk

s
of

 u
si

ng
pl

an
-d

riv
en

 m
et

ho
ds

Ri
sk

s
of

 u
si

ng
ag

ile
 m

et
ho

ds

Figure 4. Pertinent
risk items and risk
ratings for a range
of agent-based
systems.

Authorized licensed use limited to: Aarhus University. Downloaded on January 07,2021 at 11:03:43 UTC from IEEE Xplore. Restrictions apply.

66 Computer

on several small projects and for the planning and
risk management of a very large project. A related
approach, called Code Science or AgilePlus, has
been used successfully on more than a dozen pro-
jects of up to 400,000 source lines of code.10,11 This
approach uses most of the XP practices along with
a componentized architecture, risk-based situation
audits, business analyses, and on-demand auto-
matic document generation. �

References
1. B. Boehm and R. Turner, Balancing Agility and Dis-

cipline: A Guide for the Perplexed, Addison-Wesley,
2003.

2. B. Boehm, “Anchoring the Software Process,” IEEE
Software, July 1996, pp. 73-82.

3. I. Jacobson, G. Booch, and J. Rumbaugh, The Unified
Software Development Process, Addison-Wesley, 1999.

4. B. Boehm and D. Port, “Balancing Discipline and
Flexibility with the Spiral Model and MBASE,”
Crosstalk, Dec. 2001, pp. 23-28.

5. G. Anthes, “Agents of Change,” Computerworld, 27
Jan. 2003, pp. 26-27.

6. A. Elssamadisy and G. Schalliol, “Recognizing and
Responding to ‘Bad Smells’ in Extreme Program-

ming,” Proc. Int’l Conf. Software Eng., IEEE CS
Press, 2002, pp. 617-622.

7. J. Thorp, The Information Paradox, McGraw-Hill,
1998.

8. D. Parnas, “Designing Software for Ease of Exten-
sion and Contraction,” IEEE Trans. Software Eng.,
Mar. 1979, pp. 128-137.

9. B. Boehm and W. Hansen, “The Spiral Model as a
Tool for Evolutionary Acquisition,” Crosstalk, May
2001, pp. 4-11.

10. J. Manzo, “Odyssey and Other Code Science Success
Stories,” Crosstalk, Oct. 2002, pp. 19-21, 30.

11. J. Manzo, “Agile Development Methods, the Myths,
and the Reality: A User Perspective,” Proc. USC-CSE
Agile Methods Workshop, USC Center for Software
Engineering, 2003; http://sunset.usc.edu/events/past.

Barry Boehm is director of the University of South-
ern California Center for Software Engineering.
Contact him at boehm@sunset.usc.edu.

Richard Turner is a member of the Engineering
Management and Systems Engineering faculty at
the George Washington University in Washington,
D.C. Contact him at rich.turner@osd.mil.

S E T
I N D U S T R Y

S T A N D A R D S

computer.org/standards/

HELP SHAPE FUTURE TECHNOLOGIES • JOIN AN IEEE COMPUTER SOCIETY STANDARDS WORKING GROUP AT

IEEE Computer Society members work together to define standards like
IEEE 802, 1003, 1394, 1284, and many more.

802.11 FireWire
token rings

gigabit Ethernet
wireless networks

enhanced parallel ports

Authorized licensed use limited to: Aarhus University. Downloaded on January 07,2021 at 11:03:43 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

