(CS5463 Fundamentals of Software - Spring 2021

Assignment 1: Function Runtimes Table
Due 2/5/21 by 11:59pm

Completing the Program (15 points)

This program prints a table of runtimes (these are displayed in seconds) for
given functions on arrays. The program tests different array sizes to establish
a relationship between input size and runtime. It tests each array size multiple
times and then takes an average of the times. Here are example calls to the
timing functions:

int[] sizesl= { 1000, 2000, 4000, 8000, 16000};

fRT = timeAlgorithm("Insertion Sort", 10, 5, sizesl, "insertionSortInitial");
printRuntimeTable (fRT) ;

fRT = timeAlgorithm("quicksort", 10, 5, sizesl, "quickSortOptInitial");
printRuntimeTable (fRT) ;

This results in following table:

Insertion Sort

Test size Test #0 Test #1 Test #2 Test #3 Test #4 Test #5 Test #6 Test #7 Test #5§ Test #9 Average

Looo 0.oo01 0.001 0.ool 0.oo01 0.001 0.o0z 0.003 0.002 0.ool 0.oo01 0.001
2000 0.003 0.003 0.oo32 0.005 0.004 0.o04 0.003 0.005 0.oo32 0.005 0.004
4000 0.oo2 0.00g 0.o0L1 0.o0L1 0.011 0.o0l10 0.olLo 0.011 0.oog 0.oo2 0.0l10
5000 0.0Z8 0.0zZe 0.0Zge 0.030 0.037 D.0zg 0.0Z8 0.025 0.oz27 0.0Z28 0.0zZ8
Le000 0.084 0.08& 0.084 0.0%0 0.081 0.117 0.130 0.130 0.122 0.100 0.103

quicksort

Test size Test #0 Test #l1 Test #I Test #3 Test #4 Test #5 Test #6 Test #7 Test #8 Test #9 Average

1000 0.00& 0.001 0.004 0.00Z 0.001 0.001 0.00zZ 0.003 0.00zZ 0.00zZ 0.00Z
2000 0.002 0.003 0.o00zZ 0.003 0.003 0.005 0.005 0.0oz 0.003 0.00z2 0.003
4000 0.004 0.00&e 0.oo7 0.005 0.00& 0.005 0.005 0.005 0.00e 0.00e 0.00&
a000 0.013 0.018 0.01l5 0.010 0.011 0.0l1 0.011 0.009 0.0l0 0.011 0.01z
Le000 0.018 0.018 o.ozz 0.018 0.018 0.0l8 0.018 0.019 0.0l8 0.0zZ0 0.019

Note your runtimes may vary since the test data is randomly generated.

The runtimes are stored in a functionRuntimes class. You are completing a
program to create and fill data in this class, print the data of this class.

You are given a partial implementation in the files “MysteryRuntime.java”,
“functionRuntimes.java”, and “ArrayAlgs.java”. The portions of code that
you need to write have been marked with the text “TODO”.

Using the Program (5 points)

After you have the program completed, you should use it to help determine the

asymptotic runtimes of the three mystery functions (i.e., mysteryRuntimel,
mysteryRuntime2, mysteryRuntime3).

Be sure to also examine the code of the mystery functions to confirm your
estimations.

Fill in the following table with your runtimes:

/*

Give your asymptotic estimates for the runtimes of the following 3 functioms:

mysteryRuntimel: O0()
mysteryRuntime2: 0(C)
mysteryRuntime3: 0()
*/

1. Longest Sorted Subarray (4 points)
Consider the following problem:

Input: An array A[l...n| of integers
Output: The largest integer m such that the array A[l...n| has subarray of
length m which is in sorted order (i.e, increasing order).

The following pseudocode finds the length of the longest of the given array
A[l...n] by considering all possible subarrays:

Algorithm 1 longestSubArray(int A[1...n])
1: k=mn;
2: while (true) do

3: //(I) The longest increasing subarray of A has length < k
4: low=1
5: high =k
6: while (high <n) do
7: if ((isIncreasing(Allow...high])) then
8: return k;
9: end if
10: low + +
11: high + +
12: end while
13: k——;

14: end while

The following code checks if an array is increasing (i.e., each number is smaller
than the next in the array).

Example: longestSubArray([2,4,3,8,5,6,7,9,0,1]) returns 4

Algorithm 2 isIncreasing(int Cla...b])
1= a;
while 7 < b do

if (Ci] > C[i+1]) then

return false;

end if

1+ +;
end while
return true;

Justification: [2,4:-3;78,5,6,7,9, 04] = [5,6,7,9] which is a longest increas-
ing subarray of the original array.

(1) (2 points) Consider running longestSubArray on the array:
119,100,112, 114, 125, 113, 110, 129, 130, 140, 142, 115, 120]

What does longestSubArray return and what is the longest sorted sub-
array of A7

(2) (1 point) Give the best-case runtime of longestSubArray in asymptotic
(i.e., O) notation as well as a description of an array which would cause
this behavior.

(3) (1 point) Give the worst-case runtime of longestSubArray in asymptotic
(i.e., O) notation as well as a description of an array which would cause
this behavior.

(4) (0 points) Is this an efficient algorithm for finding the longest sorted
subarray? Can you find a better algorithm for computing this?

2. Asymptotic Notation (4 points)
Show the following using the definitions of O, 2, and ©.
(1) (2 points) 2n® + n? + 4 € O(n?)
(2) (2 points) 3n* — 9n? + 4n € O(n?)
(Hint: careful with the negative number)

Deliverables:

Your solution should be submitted as “MysteryRuntime.java” as well as a .pdf
file with your answers to written part of the assignment. Be sure to fill in the
table of runtimes described above:

Upload this file to Blackboard under Assignment 1. Do not zip your file.
To receive full credit, your code must compile and execute.

