
2/12/2021 Project 3

https://canvas.uoregon.edu/courses/170102/assignments/1009034 2/5

Requirements

Complete each of the following requirements.

Step 1. 111/p3/LabFunctions-04.js: Lab 4
You should have completed Week 4 Lab and uploaded LabFunctions-04.js to your 111/p3 folder on the
UO Pages server.

Step 2. 111/debug/arraysObjects.js and 111/debug/arraysObjects.html: Lab 5
You should have completed Week 5 Lab and uploaded arraysObjects.js and arraysObjects.html to your
111/debug folder on the UO Pages server.

Step 3. 111/p3/catalog.js: padString function
Create a function called padString(data, maxLength, padCharacter, padLeft) that returns data
padded with padCharacter, either to the left (before data) or the right (after data) based on padLeft, up
to maxLength. The function must be saved in a file called catalog.js.

data: Data to be padded, consider using String() to assist in performing length calculations if data is
not a string
maxLength: The numerical maximum length of padding and data combined, and no padding if the
length of the data equals maxLength
padCharacter: The string padding character (e.g. space)
padLeft: Boolean true or false, where true means pad to the left of data, and false means pad to the
right of data

Use the Chrome Console to test the padString() function. For example:

Step 4. 111/p3/catalog.html: Catalog web page
Create an HTML file catalog.html in your 111/p3 folder. Code the HTML based on your hello-world.html
file, changing the title to "Song Catalog" and removing all HTML within the body tags. Add an h2 tag with
"Song Catalog" and an h3 tag with "See console for output." The required HTML output is shown below.

2/12/2021 Project 3

https://canvas.uoregon.edu/courses/170102/assignments/1009034 3/5

Step 5. 111/p3/catalog.html: Reference catalog.js external JavaScript file
Update catalog.html to use a script tag to reference the catalog.js external JavaScript file.

Step 6. 111/p3/catalog.js: Array of song objects
Create an array of song objects using the object literal syntax. Your array must have five songs. You can
use any music billboard/chart that lists top songs to find the required information. Eventually, this array of
song objects will be used to populate your song catalog. Each song object must have the following
properties:

title: song title
artist: artist
position: numerical order on the chart
weeksOnChart: number of weeks on the chart

Below is an example of one of the objects. Remember, you must create five objects, and assign them to
an array. The array should be declared using const. Use the variable name songs for the array.

{
 title: "Song Title",
 artist: "Artist Name",
 position: 1,
 weeksOnChart: 10
}

Step 7. 111/p3/catalog.js: catalogObject custom object
You will be creating a custom object called catalogObject that will server as a container for all of the
song catalog functionality. This object will include catalog properties and methods. We will incrementally
add and test functionality. Initially, we'll declare the catalogObject, declare an array property _songs
initialized to an empty array, add method addSong(props) to add a song to _songs, and method
listSongs() to list all of the songs in _songs:

_songs: empty array property
addSong(props): Add a song to _songs, where method parameter props, short for properties, is a
song object. The addSong() method must use the String trim()
(https://www.w3schools.com/jsref/jsref_trim_string.asp) method to ensure the song title has no
leading or trailing white space.
listSongs(): Iterates through _songs array and lists out the songs. You must use a template literal

 (https://css-tricks.com/template-literals/) to output the songs to the Console. Template literals make
formatting multi-variable output easier.

2/12/2021 Project 3

https://canvas.uoregon.edu/courses/170102/assignments/1009034 4/5

console.log(`${position} - ${title}, ${artist} (${weeks})`);

Use the following steps to test catalogObject custom object

Create an instance of catalogObject:

const catalog = Object.create(catalogObject);

Load the catalog of songs by creating a for loop that iterates through the songs array, calling
catalog.addSong() for each song in the songs array.
Call catalog.listSongs() to list each song in the songs array
Test your code changes by using the browser refresh button to reload catalog.html

Step 8. 111/p3/catalog.js: Add padString() to catalogObject, and update addSong() and
listSongs() to support padded output
The output in the Console isn't very easy to read, so format the output so that each column is padded.

Move the padString() function into the catalogObject
Add the following properties to catalogObject to keep track of the maximum length of each column
as a song is added to the catalog.

_maxTitleLength: Maximum title property length, initialized to the length of column header
"Title"
_maxArtistLength: Maximum artist property length, initialized to the length of column header
"Artist"
_maxPositionLength: Maximum position property length, initialized to the length of column
header "Position"
_maxWeeksOnChartLength: Maximum weeksOnChart property length, initialized to the length
of column header "Weeks On Chart"

Update addSong() to update each of the maximum length properties as a song is added
Update listSongs() to use padString() and each of the maximum length properties to format the
catalog Console output, and to include column headers, also padded

2/12/2021 Project 3

https://canvas.uoregon.edu/courses/170102/assignments/1009034 5/5

Extra Credit Step 9. [10 pts extra credit] 111/p3/catalog.js: Add getSongByIndex()
Add method getSongByIndex(index) to return a song object from catalogObject _songs given an
index value, or an empty object if the index value is invalid

Extra Credit Step 10. [10 pts extra credit] 111/p3/catalog.js: Add getSongByTitle()
Add method getSongByTitle(title) to return a song object from catalogObject _songs given an title
value, or an empty object if the title value is not found in _songs array

Extra Credit Step 11. [10 pts extra credit] 111/p3/catalog.js: Update listSongs() to return catalog in
sorted order by position
Modify listSongs() to listSongs(sorted = false), and display the catalog of songs in sorted order based
on the song position property. Note that the (sorted = false) supplies a default value of false for the
sorted method parameter, so you'll need to use sorted to determine if sorting should be applied or not.

Step 12. Upload and Test

Remember you must upload all of the items for Project 3 to your UO Pages account using an FTP
program, and verify that the files successfully uploaded. You will only be graded on what you've
uploaded.

Your 111/p3 folder will contain the following files for this project:

[5 pts] LabFunctions-04.js
[90 pts] catalog.js and catalog.html

Your 111/debug folder will contain the following files for this project:

[5 pts] arraysObjects.js and arraysObjects.html

Do not change any item that you've uploaded once the due date deadline has passed, as we use
the time/date stamp of the files to determine if you uploaded the files before the deadline.

