Lab 2-7 Segment Display Decoder Circuit Design.

Student:

In this lab we will build a decoder circuit that can drive a common anode 7-segment LED display using a combinational logic circuit. The logic circuit is designed with four inputs and seven outputs. The four inputs will be connected to the switches on the Basys 3 development board, while the seven outputs will be connected to one of the four common anode 7-segment LED displays on the development board. Using Karnough's map, logic circuitry for each input to the display will be designed. Figure1 shows a common anode 7-segment LED display and the pinout of the Basys 3 development board.

Figure 1
Table 1 shows the truth table of a binary-coded decimal (BCD) to seven-segment decoder with common anode display. The truth table has 7 different output columns corresponding to each of the 7 segments. A 0 will turn on a segment because they are 7 segment displays. Inputs 10-15 are not used so the outputs are all X for these outputs as we don't care what they are.

	Inputs				Outputs							
Digit	A	B	C	D	CA	CB	CC	CD	CE	CF	CG	
0	0	0	0	0	0	0	0	0	0	0	1	
1	0	0	0	1	1	0	0	1	1	1	1	
2	0	0	1	0	0	0	1	0	0	1	0	
3	0	0	1	1	0	0	0	0	1	1	0	
4	0	1	0	0	1	0	0	1	1	0	0	
5	0	1	0	1	0	1	0	0	1	0	0	
6	0	1	1	0	0	1	0	0	0	0	0	
7	0	1	1	1	0	0	0	1	1	1	1	
8	1	0	0	0	0	0	0	0	0	0	0	
9	1	0	0	1	0	0	0	1	1	0	0	
10	1	0	1	0	x	x	x	x	x	x	x	
11	1	0	1	1	x	x	x	x	x	x	x	
12	1	1	0	0	x	x	x	x	x	x	x	
13	1	1	0	1	x	x	x	x	x	x	x	
14	1	1	1	0	x	x	x	x	x	x	x	
15	1	1	1	1	x	x	x	x	x	x	x	

Table 1

Step 1 Simplify the logic for each of the seven outputs using a Karnough map. For each output, place all the 1 's and X 's from the table into its Karnough map and make sure that all the 1 s are put into the biggest group they can be put in. You only have to use the Xs if they help make put the 1 s in bigger groups as this will simply the logic more. Write out the sum of products for each group.

$\mathrm{CA}=$

$\mathrm{CC}=$

$C E=$

CD AB AB 00
01

$C G=$

$\mathrm{CB}=$

CD	00	01	11	10
AB				
00				
01				
11				
10				

$C D=$

CD	00	01	11	10
AB				
00				
01				
11				
10				

$\mathrm{CF}=$

Figure 2

Step 2 Draw a combinational logic circuit for each output signal. The circuit will have 4 inputs (A, B, C, D) and 7 outputs ($C A, C B, C C, C D, C E, C F, C G$). The circuit in figure 2 is an example of a circuit with 3 inputs ($\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$) and 2 outputs ($\mathrm{f}_{1}, \mathrm{f}_{2}$).

Step 3 Implement the 7 Segment display decoder circuit in VHDL. Copy steps A and B from lab 1 to create a new project and add a design file for your circuit. The design file should have the same name as your first name. Your decoder circuit should have 4 inputs A, B, C, D and 7 outputs $C A, C B$, CC, CD, CE, CF and CG. Insert your VHDL code in the text box below.

Step 4 Copy steps C and D from lab 1 to implement a test bench for the 7 Segment display decoder circuit using VHDL. Your testbench will check that all 10 valid input combinations for inputs A, B, C and D are working correctly. These 10 valid input combinations range from " 0000 " to " 1001 ". The testbench should also check that the decoder returns the correct values, the output values for CA , $C B, C C, C D, C E, C F$ and $C G$ should be $0,0,0,0,0,0,1$ for example when the inputs for A, B, C and D are $0,0,0,0$ as shown below. Insert your VHDL code for your testbench in the box below.

A <= '0';
B $=10$ ';
C < = '0';
D $<=$ '0';
wait for 1 ns ;
 report "pass for inputs 0000"; else
report "failed for inputs 0000 "; end if;

Insert the pass fail messages from your testbench in the box below.

Step 5 Copy step F from lab 1 and create a constraints file for the 7 Segment display decoder circuit. The constraints file should connect the inputs to the switches on the Basys 3 development board, connecting input A to SW3, B to SW2, C to SW1 and D to SWO. The constraints file should also connect the outputs CA, CB, CC, CD, CE, CF and CG to segments $C A, C B, C C, C D, C E, C F$ and $C G$ on the 7 Segment displays. Figure 1 shows what pins connect the FPGA to the switches and 7 Segment display. Paste your code for the constraints file in the box below.
\square
Step 6 Copy step G from lab 1 to generate a bitstream for your design that could be downloaded onto the Basys 3 development board. Insert a screengrab of the schematic for your design and input/output list in the box below to show that the bitstream was generated successfully. Step H from lab 1 describes how to do this.

