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MatLab notions 
you should be getting familiar  

§  Matrix and vector manipulation: critical for code vectorization 
§  Plotting and 2D and 3D graphing 
§  Min and other Matlab data manipulation functions 
§  Functions: create your own function 
§  Functions of functions: fmin, calling functions from a master mfile 
§  Some GUI design capability 

§  Today: 
o  We will learn about integration in MatLab 
o  We will learn how to use matrices to model Gaussian beam propagation 



Optics 
§    The E&M Wave Equation, Refraction and Loss/Gain in optical media 

§  Ray-Optics: representing the propagation of the normal of planar 
wave fronts.  Does not take into account the amplitude of the wave, in 
other words the propagation of energy.  First order analysis of an 
optical system. 

 
§  Today we will look at another particular solution of Maxwell’s 

equation which represents the propagation of well behaved laser 
beams, both amplitude and phase propagation are well represented 
by Gaussian beams. 



Today’s Agenda 
§  2nd Homework Lab is due today! 

§  Gaussian Beams 
o  Properties of Gaussian Beams 

§  Modes of Resonant Cavities 
o  Stability Criteria 

§  Gaussian Beams in Linear Systems 
 

§  References: 
1) “Lasers”, Tony Siegman, Universtiy Sciences Book 1986 

Chapters: 16&17, 19&20 
2) “Optical Electronics”, Ammon Yariv, CBS college Publishing 
3) Kogelnik and Li,”Laser Beams and Resonators”, IEEE proceedings,

54,1312-1329, 1966 



Optical Systems applications 
of Gaussian Beams 

Op#cal	Source	
(W, φ,	λ,	Ap)	

Propagation Material 
(Loss, Gain, Distortion) 

Power Projection 
(Aperture, Focal Length, Distortion) 

Receiving Optics 
FoV, FoR, Distortion 

Receiver 
(Gain, Noise) 

1)  Diode laser 
2)  LED 
3)  Fiber Laser 
4)  Bulk Laser 
5)  Black Body 

1)  Fiber 
coupler 

2)  Telescope 
3)  Lens 

1)  Vacuum 
2)  Atmosphere 
3)  Lens/mirror 
4)  Materials 
5)  Fiber 
6)  Amplifier 

1)  Fiber 
coupler 

2)  Telescope 
3)  Lens 
4)  Adaptive 

optics 
5)  Pin camera 

1)  Eye 
2)  Thermometer 
3)  Photo-Diode 
4)  PMT 
5)  Interferometer 
6)  Signal/Image 

Processing 



Gaussian Beams 



Let’s start with the wave equation for the electric field in vacuum: 
 
 
 
In analyzing laser beams, we focus on monochromatic electric fields at a single frequency ω, 
and the solutions of the wave equation we pursue have the form: 
 
 

The wave equation applied to this expression results in the Helmholtz equation for ε(r):  
 
 
 
Two possible solutions of the Helmholtz equation are particularly important:  
 
 

          Plane waves           Spherical wave     (r ≠ 0) 

 ε0: amplitude (constant)       point source at origin; intensity |ε|2 ~ 1/r2 

                A: amplitude (constant) 
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Analysis of an approximate solution of Maxwell’s equations that relates to laser beams 
inside and outside the resonator.  



Spherical wave solution 
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If the analysis is restricted to a small region around the 
point (0,0,R) then  x2+y2  is small compared to R2   
(paraxial wave), and in the Taylor series expansion 
 
 
 
we can use only the first two terms. 
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The term                 is small compared to R, but not compared to λ = 2π/k.    
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This approximation is frequently used in physical optics. For this approximation to be a good 
one, the third term in the Taylor expansion of r must be small compared to the wavelength: 
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Gaussian Beams 

The plane wave and spherical wave solutions of the Helmholtz equation provide insight but cannot 
represent laser beams. We have to find a beam solution to: 
 
 
In a Gaussian beam, at any plane normal to the propagation direction z, the electric field amplitude is 
highest on the z axis, and decreases away from it. Therefore we use a form that has a spatially varying 
amplitude: 
 
 
 
Applying the Helmholtz equation to this field, we get: 
 

We can assume that the field amplitude ε0(r) and its derivative ∂ε0(r)/∂z do not vary significantly 
within a distance of the order of a wavelength, in the z direction: 
 
 
 
 
and because 
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The second derivative with respect to z is: 
 

                                             but since 
 
 
 
 
 
The Helmholtz equation 
 
 
 
 
becomes 
 

               (paraxial wave equation) 
 
 
where               is the transverse Laplacian operator.   
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Gaussian Beams 
 
 
In a plane normal to the direction of propagation z, the intensity of a Gaussian beam can be 
represented with: 
 
At a transverse distance w from the z axis, the intensity drops by a factor of e2 (7.389) 
compared to the z axis value (maximum). The radius of the laser beam spot size is w(z). 
Guided by the Gaussian formulation, we attempt to find a solution for the paraxial wave 
equation 
 
 
a solution of the form 
 
 
where A is a constant and q(z) and p(z) should be determined to satisfy the paraxial wave 
equation. If we set  
 
 
then the solution gets a Gaussian intensity profile. By setting a q value that depends on z, 
we enable the spot size to vary with distance, as observed in laser beams. 
 
Next we apply the paraxial wave equation to the attempted solution, to start the derivation 
of q(z) and p(z). 
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The transverse Laplacian: 
 
 
 
The first derivative with respect to z: 
 
 
 
The paraxial wave equation:  
 
 
 
For this equation to hold we need: 
 
 
 
 
 
To account for the most general case, we expect q(z) to be complex and have the form:  
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where  R0 = R(0)   and   w0 = w(0)      at  z = 0  
 
Where is z = 0?   It is an arbitrary choice.  Let’s choose z = 0 to be the plane at which R = ∞. 
Then, R0 = ∞ and 
 
 
 
We also know that             which can be written as 
 
Substituting the value of 1/q0 we derived above, we get: 
 
 
 
and multiplying the denominator and numerator with the conjugate of the denominator, we obtain 
 

                         which should be equivalent to 
 
 
These lead to expressions for R(z) and w(z), by equating separately the real and imaginary parts.  
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Gaussian Beams 



The imaginary part is             or 
 
 
leading to 
 
 
 

The real part is                               or  
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Gaussian Beams 

The Rayleigh Range defines the length of collimation !! 

(M2)2 



The full expression of the amplitude is  
 
 
with 
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The spot size w(z) is minimal at the plane z = 0, where its value is w0 (beam 
waist). At the Rayleigh range z0, the spot size is 
 
 
 
The Rayleigh range is considered to be a measure of the length of the waist 
region. A small beam waist produces a short waist region, and a rapid 
growth in spot size. 
 
The divergence angle of a Gaussian beam is defined as 
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Transmission through an 
Aperture of a Gaussian Beam 
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High order Gaussian Modes 

TEM11 TEM22 TEM33 
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A similar expression is used in cylindrical coordinates using Laguerre polynomials 
instead of Hermitte polynomials in Cartesian coordinates 



Gaussian m.file 

• GaussAper.m 



Gaussian Beams 
Modes of Laser Cavities 



Modes of Resonant Cavity 

• Phase fronts need to match the 
boundary conditions provided by the 
mirror curvatures. 
• You also need to find the position of 
the waist, infinite curvature phase front 
(plane-wave). 
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Modes of Resonant Cavity 
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Symmetric Resonators 

• g1=g2=g  R1=R2=R 

2
2
2

2
1

2

1
1

)1(4
1

g
L

g
gL

o

−
==

−

+
=

π
λ

ωω

π
λ

ω

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

g=1-L/R

ω
 x

 (π
 / 

Lλ
)(1

/2
) ω

1 & ω2

ω
o



Stable Cavity Designs 
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We derived three expressions: 
 
Using these we can express the term e-jp(z) as 
 
 
 
We started by looking for a solution of the wave equation of the form 
 
with a varying amplitude expressed as 
 
 
 
Now that we derived q(z) and p(z) we can write the full expression for the solution of the 
paraxial wave equation.           
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Frequency condition 
for resonant fields 

• For a plano-plano cavity, the round trip 
condition of the phase needs to be a 
modulus 2π: 
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Gaussian Beam 
Propagation 
ABCD Matrix 



ABCD matrices formalism 

• A linear optical system can be 
represented by a 2x2 matrix 

• It can be shown that in the paraxial 
approximation for Gaussian beams the 
response of a linear system can be 
represented by the following 
expression 
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Example of ABCD systems 
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Refraction 

Refractive Spherical surface 

Thin Lens 

Reflective Spherical Mirror 

Parabolic Duct 



Focusing a Gaussian beam 
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be small otherwise 
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Example of 
Repetitive Structures 
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Backup 


