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Matrix and vector manipulation: critical for code vectorization
Plotting and 2D and 3D graphing

Min and other Matlab data manipulation functions

Functions: create your own function

Functions of functions: fmin, calling functions from a master mfile
Some GUI design capability

Today:
o We will learn about integration in MatLab
o We will learn how to use matrices to model Gaussian beam propagation
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» The E&M Wave Equation, Refraction and Loss/Gain in optical media

» Ray-Optics: representing the propagation of the normal of planar
wave fronts. Does not take into account the amplitude of the wave, in
other words the propagation of energy. First order analysis of an
optical system.

= Today we will look at another particular solution of Maxwell’ s
equation which represents the propagation of well behaved laser
beams, both amplitude and phase propagation are well represented
by Gaussian beams.



Enai . ’
e Today s Agenda

= 2nd Homework Lab is due today!

= Gaussian Beams
o Properties of Gaussian Beams

= Modes of Resonant Cavities
o Stability Criteria

» Gaussian Beams in Linear Systems

» References:

1) “Lasers”, Tony Siegman, Universtiy Sciences Book 1986
Chapters: 16&17, 19&20
2) “Optical Electronics”, Ammon Yariv, CBS college Publishing

3) Kogelnik and Li,”Laser Beams and Resonators”, IEEE proceedings,
54,1312-1329, 1966
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Power Projection Receiving Optics

(Aperture, Focal Length, Distortion) FoV, FoR, Distortion
Optical Source Propagation Material
(W, ¢, A, Ap) ( , Distortion)
1) Diode laser | 1) Fiber 1) Vacuum 1) Fiber

coupler 2) Atmosphere coupler
3) Fiber Laser | 2) Telescope 3) Lens/mirror 2) Telescope
4) Bulk Laser | 3) Lens 4) Materials 3) Lens
5) Fiber
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Gaussian Beams
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Analysis of an approximate solution of Maxwell’ s equations that relates to laser beams
inside and outside the resonator.

Let’ s start with the wave equation for the electric field in vacuum:
2

V2E(r,t) - %%E(r,z) =0
c” 0t

In analyzing laser beams, we focus on monochromatic electric fields at a single frequency w,
and the solutions of the wave equation we pursue have the form:

E(r,t) = E(r)e’?!
The wave equation applied to this expression results in the Helmholtz equation for E(r):

VZE(r) + k2€(r) =0 k=w/c=2r/A wavenumber

Two possible solutions of the Helmholtz equation are particularly important:

— Tk e A -7
E(r) = Ege /KT Er)="e W
r
Plane waves Spherical wave (r#0)
E,: amplitude (constant) point source at origin; intensity |E|? ~ 1/r?

A: amplitude (constant)
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1/2 _

Spherical wave solution E) = ée_jkr r= (x + y +R? )
v

If the analysis is restricted to a small region around the
point (0,0,R) then x?>+y? is small compared to R’
(paraxial wave), and in the Taylor series expansion
1/2
1+x2+y2 =1+x2+y (x +y)
R* 2R* 8R*
we can use only the first two terms.

(0,0,0)

(0,0,R)]

(x* +y?) k(x* + %)
2R 2R

Weget r=R+ and the product kr can be approximated with  kr = kR +



St L Gaussian Beams

1/2 D)

x? +y2 X +y2 (x2 + y2)2
1+ 5 =1+ S 1 +...
(0,0,0) (0,0,R)} R 2R 8R
2, .2
Theterm * *Y  is small compared to R, but not compared to A = 27t/k.

2R

A ap 2.2
The field on the plane z = R, around x = 0, and y = 0, becomes E(r)=Ee JKR = jk(x"+y7)/ 2R

This approximation is frequently used in physical optics. For this approximation to be a good
one, the third term in the Taylor expansion of » must be small compared to the wavelength:

2 2.2 2 2.2 2 2
R(x +Z) << A (x +y3) <<1 %<<(£) a =+ 2+)/2
8R 8AR a
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The plane wave and spherical wave solutions of the Helmholtz equation provide insight but cannot
represent laser beams. We have to find a beam solution to:

V2ET) +k*Er) =0

In a Gaussian beam, at any plane normal to the propagation direction z, the electric field amplitude is
highest on the z axis, and decreases away from it. Therefore we use a form that has a spatially varying
amplitude:

E(r) = Ey(r)e /<

2 2

2
Applying the Helmholtz equation to this field, we get: ( dJ 5+ J
0x

ad

+
o> az°

(@)

Eo()e 7 + k2 Ey(r)eF =

We can assume that the field amplitude €,(7) and its derivative d €,(7)/dz do not vary significantly
within a distance of the order of a wavelength, in the z direction:

2
pILLZ PPN P L 2 1 11
dz 822 Jz ‘
and because 2 g g 2 g
k=2m/A, ~0 << k|&y| and 0 << k‘ 0
0z 822 0z
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The second derivative with respect to z is:

2 , 2 _ 2
a—go(l')e_]kz = 9o _ 2jk@ —k2€0 e~k but since 0”&y << k‘ﬂ
2 2 0z 2 0z
0z 0z 0z
0° — jkz 0E) 24\ —jk
—280(1‘)6 J z(—ij——k Eo)e J
0z 0z
The Helmholtz equation
62 82 — jkz a“/?O(r) - jkz 2 — jkz 2 — jkz
St Eor)e ™ =2 jk—2e7 " — k2 Ey(r)e™ ! + k“EY(r)e™ /" =0
ox~ oy 0z
becomes
% 9% 0 - y 2 L E(r)
—5t—5 - 2]ka_ Eo(r)=0 (paraxial wave equation) V7Ey(r)-2jk——==0
ox~ dy z 0z
2 2
» 0 0 ) :
where V7 = 6—2 + 8—2 is the transverse Laplacian operator.
X y
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In a plane normal to the direction of propagation z, the intensity of a Gaussian beam can be
ted with: _2(x% %)/ w?
represented wi I(x,y.2) ~ ‘ & (r)‘ze 2(x% +y°)/w(2)

At a transverse distance w from the z axis, the intensity drops by a factor of e? (7.389)
compared to the z axis value (maximum). The radius of the laser beam spot size is w(z).
Guided by the Gaussian formulation, we attempt to find a solution for the paraxial wave

equation 9 Ey(r)

VZEy(r) - 2jk 0

a solution of the form ‘ Eo(r) = Ae—jk(x2 +y2)/2(I(Z)e-JP(Z)

where 4 is a constant and g(z) and p(z) should be determined to satisfy the paraxial wave
equation. If we set

then the solution gets a Gaussian intensity profile. By setting a g value that depends on z,
we enable the spot size to vary with distance, as observed in laser beams.

Next we apply the paraxial wave equation to the attempted solution, to start the derivation
of g(z) and p(2).
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The transverse Laplacian:

_92i 2 S22 .
V2E,(r) = A 2jk _ k2 (2 + p2) o= HG2+7%)/24(2) = p(2)
9 q
The first derivative with respect to z:
90) _ gk x2 4 y2) L _ | k(P 41%)/2(2) ()
0z 2 qz dz dz

The paraxial wave equation:

2 ; 0,22 .
VZ2Ey(r) - 2jkm — A k_(x2 +3%) dq 1\ _ 2k dp + L || KT +y7)/29(2) ,-ip(2) _
0 q2 dZ q

For this equation to hold we need: ,

aq _ dp _ _J

dz dz q

, +z
q(z)=qp +z p(z)=-jin90
q0

q0 = q(0) p(0)=0

To account for the most general case, we expect g(z) to be complex and have the form:
1 1 jA

R(z) and w(z) are real functions

9z RG) mi(2)
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qO+Z
. -In 1 1
oD, a0 __90  _ _
qo+z 1+2/qy 1+z/Ry- jrz/7w}
where R,=R(0) and w,=w(0) atz=0

Where is z=0? It is an arbitrary choice. Let s choose z = 0 to be the plane at which R = oo.
Then, R, = o0 and
11 jA  ji

90 Ro i

1 l/qO

We also know that g(z) = g¢ + z which can be written as = =
q(2) qo+z 1+z(l/q9)

Substituting the value of 1/¢g, we derived above, we get:
1 - jAawg
q(2)  1- jzAlawd

and multiplying the denominator and numerator with the conjugate of the denominator, we obtain

. 2 2.2 .
1 __J Alwg + z(Al o) which should be equivalent to 1 _ 1 __J A
q(2) 1+ (zA/owd)? q(z) R(z) mw?(z)

These lead to expressions for R(z) and w(z), by equating separately the real and imaginary parts.

II!%HHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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2.2 2\2
The real part 1s Z(A/WO)z 7 = : or R(z) = ! 55t (zﬂ/nwg)z
1+ (zA/awg)”  R(2) z(Alawg)”  z(Alawg)
2\2 2 2
R(z)=z+ (szoz) or |R(z)=z+ Zo | with z, = n;VO (Rayleigh range)
z
The imaginary part is —or
. 2 : 2
]ﬂ./ﬂWg > __ ]2). Jaw (22) 1+ (Zl/ﬂwg)z
1+ (zA/7awgy) aw” (z) W

leading to

w(z) = w01/1+<2/z§

(M2)2

The Rayleigh Range defines the length of collimation !!
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Gaussian Beams

The full expression of the amplitude is

e/ ?(2)

Eo(r) = 5

with 1+27/zj

o= G 4y7)12R(2) = (x% 4 7) [ w? (2)

2 2
R(Z)=Z+ZL w(z)=w0\/1+22/zg 20 - ™ ‘

A

]

R(z) (m) (x,y}
20 T ,/

b

z,=3.14m

0 2 4 6 8 10 12 14 16 18 20

z (m)

{x,y}
L

'f‘“-:,"!ﬂ:"'."_ﬂiqg ,w°‘\/_§ ; t
= 1 —~ '
z=0 \
beam waist
mirror\

Beam profile Curved
wavefront
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The spot size w(z) 1s minimal at the plane z = 0, where 1ts value 1s w, (beam
waist). At the Rayleigh range z, the spot size 1s

w(zg) = wo~2

The Rayleigh range is considered to be a measure of the length of the waist
region. A small beam waist produces a short waist region, and a rapid
growth in spot size.

The divergence angle of a Gaussian beam is defined as

w(z) w A
0 = ()z 0 _ zZ >> z ‘

(x,y) z zg 7w (XJ,y}
) i
-k ZO M
T — r w(z)
e i [ .""o’J? i
z:
beam waist

infensity intensity
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100

80}

SE:; 60}
7, S
max [ 7 max -2— -2 m/2 @ 40t
T = 2mrdr —= ( ) 2mrdre ™ =1-e “ E
0 0 0 20}
%05 i 15 2 25 3
Aperture Size/2xwO
Input Transmitted Diffracted Field
Gaussian Field Aperture Gaussian Field By Aperture
30}
c\,‘\25~
£
520~
g 10|
5k
00 2 4

Lateral Dimension (cm)
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k x+y?

l ) . .
Hm (.X)Hn (y)e 2 q(z) ezk.ze—l(m+n+l)1/1(z)

1 1
2m+nn m C{)(Z)

A similar expression is used in cylindrical coordinates using Laguerre polynomials
instead of Hermitte polynomials in Cartesian coordinates

ep.jhu.edu



E . . | u
L e e Gaussian m file

* GaussAper.m
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Gaussian Beams
Modes of Laser Cavities
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Phase fronts need to match the aw* \ 1 a0\ 1
boundary conditions provided by the R, = -z, —( ° ) — 5 R,=+z, +( : )
mirror curvatures. “ %
*You also need to find the position of
the waist, infinite curvature phase front z,—z, =L
(plane-wave).

R1 mirror R2 mirror

Beam profile

wavefront
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Modes of Resonant Cavity

R1 mirror

Beam profile

wavefront

2122 _ 2 g1g2(1_g1g2)
(gl T4, _2g1g2)2

Zl=_ gz(l_g1) L Zz=Zl+L

g +g,-2g88,

5 LA\/ g, 5 Lﬂ.\/ g,
w = w; =
1 7T g1<1_g1g2) S gz(l_g1g2)
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Symmetric Resonators

2o

)
|

 x (% / LA
2

ey

0.5

0
g=1-L/R
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Stable Cavity Designs

Unstable
2.
Plano-Plano
Unstable
1L
Sthble
Q
table Confocal
1L
Concentric
2 Unstable
Unstable
3 2 0 1 2

L
0= (1=~

L)sl
R2
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We derived three expressions:

. . o 1
Using these we can express the term e/?@) as e /P (=) _
) 1+ Z/qO
1 __JA o Wi
90 szg 0=

We started by looking for a solution of the wave equation of the form
with a varying amplitude expressed as

e~ P(2) - = /92 where | ¢(z) = tan~! (z/z)
- jz/zg 1/1+22/z2
0

Now that we derived g(z) and p(z) we can write the full expression for the solution of the
ial tion. _i
paraxial wave equation E(r) = £y (r)e jkz

Eo(r) = A=K +3%)/2q(2) 4= jp(2)
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for resonant fields

*For a plano-plano cavity, the round trip
condition of the phase needs to be a

modulus 2mx:
c/2L
eizk.L — eiZJm U=n S
J—\:t_LLLL 2L
gtmm WV om0 (2 —p(2,)]) = Vae,
c/2L
-1
1 . c, q+(n+m+1)cos (\/gng)
2L T
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Gaussian Beam
Propagation
ABCD Matrix
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*A linear optical system can be

represented by a 2x2 matrix , v, = Al”l + Brl
Pap.
ABCD
- Dr,-n,
7‘2 =
rry B

Ag,+ B

4,

It can be shown that in the paraxial

approximation for Gaussian beams the CQ1 + D
response of a linear system can be

represented by the following 1 1 JA
expression

g(z2) R(z) mv(z)

ep.jhu.edu
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(1) f Translation
10 :
0 ,%2J Refraction
1 0 Refractive Spherical surface
( —nzy n /n
n,R '
o Thin Lens
-1/f 1
10 Reflective Spherical Mirror
—2/R 1
sin(L |2
cos(L @) o .
n nn, Parabolic Duct
—n,n, sin(L \/Z—T) cos(L \/Z—j)
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Zr=n(x)12/7\. 1 _ b gA A
\ ! Rl ”a)lz ”CU12
20, 20, 2003 1.1 = q, _fﬂf with a == b= /12
! \ 9, 4 f a + A T
=9, +7Z =>i=%_ﬂjcj
To achieve tight A B
focusing f/zr needs to P
be small otherwise a f w, A

the focal spot is not at BT NEVAY | \/ :
the focal plane of o (A?) ’ 1+(%R)

linear ray optics

ep.jhu.edu
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1 01 34 1 3d
4/ o Y]y
d

d/2 \f d/Z/
/12+(3?—2)/1+1=O

RingCavity.m

iz
7 =1-2 (pﬂ)

2/ 3d

2 / 0< % < % Stability Condition
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Backup



