A function B : ℤ x ℤ → ℤ is called 'bilinear' if it satisfies B(x+y,z)=B(x,z) + B(y,z) and also B(x,y+z)=B(x,y) + B(x,z) for all x,y,z ∈ ℤ. Suppose B is bilinear: a) Expand B(x+y,x+y) so that all the addition happens outside of B. b) Show that ∀x ∈ ℤ, B(x,x)=0 ⇔ ∀x,y ∈ ℤ, B(x,y)= -B(y,x) --
Sun | Mon | Tue | Wed | Thu | Fri | Sat |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 1 | 2 | 3 | 4 | 5 |